
Long-term Analysis of Cosmic Ray Background
Seen by the RAPID Electron Detector on Cluster

Patrick Daly

Max-Planck-Institute for Solar System Research, Göttingen

Geospace Revisited: Rhodes, Greece
September 15–20, 2014



Contents

1 RAPID on Cluster
The IES Instrument

2 Electron Background
The Past
The Present

3 The Analysis
Method
Poisson Test

4 Long Term Analysis

Patrick Daly (MPS) RAPID Cosmic Ray Analysis Geospace 2014, Rhodes 2 / 12



RAPID Spectrometer on Cluster

RAPID is an energetic imaging particle, measuring both electrons and
ions in the >30 keV range.

The Imaging Electron Spectrometer (IES) is
the electron part, consisting of 3 units, each
with 3 detectors, covering the angular range
from 0◦ to 180◦ in 9 segments.
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IES Characteristics

Field-of-view ±17.5◦ × 180◦

Angular coverage
Polar 180◦/9
Azimuthal 360◦/16

Geom. Fact. 2.2 × 10−3 cm2
· sr

(per detector)

Chan Low limit, keV
BM NM

1 39.2 39.2
2 50.5 50.5
3 68.1 68.1
4 94.5 94.5
5 127.5 127.5
6 175.9 244.1
7 244.1 —
8 336.5 —

Upper 406.5 406.5
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Electron Background Rates
Previous work

The IES Background Counts
• It has long been realized that the IES count rates never go down

to zero, but that there is always a low-level rate present, . 1 s−1.

• Reiner Friedel reported on it at a RAPID Team Meeting in Beijing
(2005); he showed how he automatically determined the BG, and
that it is fairly constant, but possibly increasing since 2003.
• In 2006, we examined some examples to determine that it was

random noise (Poisson statistics) and not at a regular frequency.
• We considered it to be some kind of internal instrumental noise,

although no one could really explain what it might be.
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Electron Background Rates
Previous work

The IES Background Counts
• It has long been realized that the IES count rates never go down

to zero, but that there is always a low-level rate present, . 1 s−1.

• Reiner Friedel reported on it at a RAPID Team Meeting in Beijing
(2005); he showed how he automatically determined the BG, and
that it is fairly constant, but possibly increasing since 2003.
• In 2006, we examined some examples to determine that it was

random noise (Poisson statistics) and not at a regular frequency.
• We considered it to be some kind of internal instrumental noise,

although no one could really explain what it might be.
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Electron Background Rates
Previous work

The IES Background Counts
• It has long been realized that the IES count rates never go down

to zero, but that there is always a low-level rate present, . 1 s−1.
• Reiner Friedel reported on it at a RAPID Team Meeting in Beijing

(2005); he showed how he automatically determined the BG, and
that it is fairly constant, but possibly increasing since 2003.

• In 2006, we examined some examples to determine that it was
random noise (Poisson statistics) and not at a regular frequency.
• We considered it to be some kind of internal instrumental noise,

although no one could really explain what it might be.
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Electron Background Rates
Current work

Properties of the BG
• The count rates are very low, < 1 s−1, and each accumulation is

over 1 spin (4 s) so the measurements consist of many 0’s with
some 1’s scattered among them.

• They are randomly scattered, obeying Poisson statistics, so the
variance is equal to the mean value (on average!!)

Prob(n) =
λn

n!
e−λ

where <n> = λ

Var(n) = λ

• One needs to accumulate over long times to get reliable statistics.
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Electron Background Rates
Current work

An example
• A sequence of 40 measurements from one detector and energy

channel:

0 0 1 0 1 0 2 1 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 2 0 0 1 0 0 0 0 0 2 0 0

• It contains 29 0’s, 8 1’s, and 3 2’s. The mean value is 0.275.
• For a Poisson distribution with λ = 0.275 the average number of
0’s, 1’s, 2’s for 40 samples is 30, 8, 1, respectively. Hence this
sequence appears to be consistent with a Poisson distribution.

But for this work we need something more mathematically precise!
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The Goal of the Analysis

The Task at Hand
• To determine the floor count rate at any given time, and to see

how it varies over the course of the Mission.

• Since individual measurements are mostly 0’s, a sufficiently long
time interval must be chosen.
• On the other hand, we must ensure that only BG is within that

interval, excluding any true events.
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The Method Applied

Selection Criteria
• We take intervals of 1 hour, containing ∼900 samples.

• The instrument must be in integration time mode of 50µs (other
modes occur only for higher count rates).
• The SC are >7 RE from the Earth, to avoid radiation belts.
• The 900 individual measurements must conform to a Poisson

distribution of a constant mean!
• The hourly results are taken over an entire orbit, and the mininum

value is then taken for that orbit.

It is the Poisson test that is the trickiest part of this procedure.
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Testing for Poisson Consistency

The Variance Test
• For a Poisson distribution we have:

Mean value = λ; Variance = λ

• Method: take data in the (long) accumulation time,

• find the mean value x̄ = 1
N
∑

xi → λ

• find the variance Var = N
N−1

(
1
N
∑

x2
i − x̄2

)
• see how far it deviates from the expected value λ.

• For this we need the variance of the variance, a long formula in
powers of 〈x4

〉, 〈x3
〉, 〈x2

〉, 〈x〉;
• The deviation of the variance is thus (Var− λ)/

√
var(Var)

• If the variance deviates beyond the 95% confidence level, the
Poisson assumption is rejected.
• For a normal distribution, the 95% level is at 1.64 s.d.; Monte

Carlo find this for Poisson distribution, which→ 1.64 as λ→> 5.
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Testing for Poisson Consistency

Reliability of the variance test
• For true Poisson distributions of constant λ, 5% will be rejected

(that is what 95% confidence level means). These are the
false negatives

• To work out the rate of false positives we need some model for
non-Poisson data.
• We try taking a sample where λ varies steadily by a factor of 2,

and test again (Monte Carlo) how many are accepted.

Result

• For small λ < 1, almost 95% of these bad distributions are still
accepted.
• Once λ varies from 1→2, do we get significant rejection rates.
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Long Term Results

Electron Background from 2001 to mid-2014
• We plot the orbit minima for the 4 SC and energy channels 2–6.

• There is a very definite systematic variation, with an increase
starting in 2003, a maximum at 2010, and a minimum about now
(mid- 2014).
• This is of course the (inverse) solar cycle.
• A similar pattern for background particle radiation has been seen

on Cassini at Saturn.
• We therefore conclude that this RAPID electron background is

also a product of penetrating cosmic ray radiation, modified by
solar cycle activity.
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