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RAPID is an energetic imaging particle, measuring both electrons and
ions in the >30keV range.
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RAPID Spectrometer on Cluster

RAPID is an energetic imaging particle, measuring both electrons and
ions in the >30keV range.

The Imaging Electron Spectrometer (IES) is
the electron part, consisting of 3 units, each
with 3 detectors, covering the angular range
from 0° to 180° in 9 segments.

IES
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IES Characteristics

Field-of-view

Angular coverage
Polar
Azimuthal

Geom. Fact.

(per detector)

+£17.5° x 180°

180°/9
360°/16
22 x 103 cm? . sr
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Chan Low limit, keV

BM NM
1 39.2 39.2
2 50.5 50.5
3 68.1 68.1
4 945 945
5 1275 1275
6 175.9 2441
7 2441 —
8 3365 —
Upper 406.5 406.5
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Electron Background Rates

Previous work

The IES Background Counts

e It has long been realized that the IES count rates never go down
to zero, but that there is always a low-level rate present, < 1s7'.
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Electron Background Rates

Previous work

The IES Background Counts

e It has long been realized that the IES count rates never go down
to zero, but that there is always a low-level rate present, < 1s7'.
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Electron Background Rates

Previous work

The IES Background Counts

e It has long been realized that the IES count rates never go down
to zero, but that there is always a low-level rate present, < 1s7'.
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Electron Background Rates

Previous work

The IES Background Counts
e It has long been realized that the IES count rates never go down
to zero, but that there is always a low-level rate present, < 1s7'.
¢ Reiner Friedel reported on it at a RAPID Team Meeting in Beijing
(2005); he showed how he automatically determined the BG, and
that it is fairly constant, but possibly increasing since 2003.
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that it is fairly constant, but possibly increasing since 2003.

e In 2006, we examined some examples to determine that it was
random noise (Poisson statistics) and not at a regular frequency.
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Electron Background Rates

Previous work

The IES Background Counts

e It has long been realized that the IES count rates never go down
to zero, but that there is always a low-level rate present, < 1s7'.

¢ Reiner Friedel reported on it at a RAPID Team Meeting in Beijing
(2005); he showed how he automatically determined the BG, and
that it is fairly constant, but possibly increasing since 2003.

e In 2006, we examined some examples to determine that it was
random noise (Poisson statistics) and not at a regular frequency.

e We considered it to be some kind of internal instrumental noise,
although no one could really explain what it might be.
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Electron Background Rates

Current work

Properties of the BG

« The count rates are very low, < 1s~', and each accumulation is
over 1 spin (4 s) so the measurements consist of many 0’s with
some 1’s scattered among them.
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Electron Background Rates

Current work

Properties of the BG

« The count rates are very low, < 1s~', and each accumulation is
over 1 spin (4 s) so the measurements consist of many 0’s with
some 1’s scattered among them.

e They are randomly scattered, obeying Poisson statistics, so the
variance is equal to the mean value (on average!!)

)\n

_ = oA
Prob(n) = n!e
where <n> = A
Var(n) = A
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Electron Background Rates

Current work

Properties of the BG

« The count rates are very low, < 1s~', and each accumulation is
over 1 spin (4 s) so the measurements consist of many 0’s with
some 1’s scattered among them.

e They are randomly scattered, obeying Poisson statistics, so the
variance is equal to the mean value (on average!!)

)\n

_ = oA
Prob(n) = n!e
where <n> = A
Var(n) = A

e One needs to accumulate over long times to get reliable statistics.

Patrick Daly (MPS) RAPID Cosmic Ray Analysis Geospace 2014, Rhodes 6/12



¢ A sequence of 40 measurements from one detector and energy
channel:
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Electron Background Rates

Current work

An example

e A sequence of 40 measurements from one detector and energy
channel:
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Electron Background Rates

Current work

An example
e A sequence of 40 measurements from one detector and energy
channel:
00101021001000000011
00010000200100000200
e |t contains 29 0’s, 8 1’s, and 3 2’s. The mean value is 0.275.
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Electron Background Rates

Current work

An example
e A sequence of 40 measurements from one detector and energy

channel:
0010
0001

1

02100 000O0O0O0OO
00020 1000002 0

o~

1 1
0 0
e |t contains 29 0’s, 8 1’s, and 3 2’s. The mean value is 0.275.

e For a Poisson distribution with » = 0.275 the average number of
0’s, 1’s, 2’s for 40 samples is 30, 8, 1, respectively. Hence this
sequence appears to be consistent with a Poisson distribution.
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Electron Background Rates

Current work

An example
e A sequence of 40 measurements from one detector and energy

channel:
0010
0001

1

02100 000O0O0O0OO
00020 1000002 0

o~

1 1

0 0

e |t contains 29 0’s, 8 1’s, and 3 2’s. The mean value is 0.275.

e For a Poisson distribution with » = 0.275 the average number of
0’s, 1’s, 2’s for 40 samples is 30, 8, 1, respectively. Hence this
sequence appears to be consistent with a Poisson distribution.

But for this work we need something more mathematically precise!
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e To determine the floor count rate at any given time, and to see
how it varies over the course of the Mission.
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The Goal of the Analysis

The Task at Hand

o To determine the floor count rate at any given time, and to see
how it varies over the course of the Mission.

¢ Since individual measurements are mostly 0’s, a sufficiently long
time interval must be chosen.
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The Goal of the Analysis

The Task at Hand

o To determine the floor count rate at any given time, and to see
how it varies over the course of the Mission.

¢ Since individual measurements are mostly 0’s, a sufficiently long
time interval must be chosen.

¢ On the other hand, we must ensure that only BG is within that
interval, excluding any true events.
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o We take intervals of 1 hour, containing ~900 samples.




The Method Applied

Selection Criteria
e We take intervals of 1 hour, containing ~900 samples.

e The instrument must be in integration time mode of 50 us (other
modes occur only for higher count rates).
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e The SC are >7 Rg from the Earth, to avoid radiation belts.
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The Method Applied

Selection Criteria

We take intervals of 1 hour, containing ~900 samples.

The instrument must be in integration time mode of 50 us (other
modes occur only for higher count rates).

The SC are >7 Re from the Earth, to avoid radiation belts.

The 900 individual measurements must conform to a Poisson
distribution of a constant mean!

The hourly results are taken over an entire orbit, and the mininum
value is then taken for that orbit.
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The Method Applied

Selection Criteria
e We take intervals of 1 hour, containing ~900 samples.

e The instrument must be in integration time mode of 50 us (other
modes occur only for higher count rates).

The SC are >7 Re from the Earth, to avoid radiation belts.

The 900 individual measurements must conform to a Poisson
distribution of a constant mean!

The hourly results are taken over an entire orbit, and the mininum
value is then taken for that orbit.

It is the Poisson test that is the trickiest part of this procedure.
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Testing for Poisson Consistency

The Variance Test

e For a Poisson distribution we have:
Mean value = A; Variance = A
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e For a Poisson distribution we have:
Mean value = A; Variance = A

e Method: take data in the (long) accumulation time,
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Testing for Poisson Consistency

The Variance Test
¢ For a Poisson distribution we have:
Mean value = A; Variance = A
e Method: take data in the (long) accumulation time,
o findthe meanvalue X = L X% — A
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¢ For a Poisson distribution we have:
Mean value = A; Variance = A
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o findthe meanvalue X = L X% — A

o find the variance Var = 5= <1N > x2 - )'(2>
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Testing for Poisson Consistency

The Variance Test
e For a Poisson distribution we have:
Mean value = A; Variance = A
e Method: take data in the (long) accumulation time,
o findthe meanvalue X = L X% — A
o find the variance Var = 5= <1N > x2 — X2
e see how far it deviates from the expected value 1.
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Testing for Poisson Consistency

The Variance Test

e For a Poisson distribution we have:
Mean value = A; Variance = A

e Method: take data in the (long) accumulation time,
o findthe meanvalue X = L X% — A
o find the variance Var = 5= <1N > x2 — X2
e see how far it deviates from the expected value 1.

e For this we need the , @ long formula in

powers of (x*), (x3), (x?), (x);
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Testing for Poisson Consistency

The Variance Test

e For a Poisson distribution we have:
Mean value = A; Variance = A

e Method: take data in the (long) accumulation time,
o findthe meanvalue X = L X% — A
o find the variance Var = 5= <1N > X2 — )'(2>
e see how far it deviates from the expected value 1.

e For this we need the , @ long formula in

powers of (x*), (x3), (x?), (x);

e The deviation of the variance is thus (Var — 1) /+/var(Var)

Patrick Daly (MPS) RAPID Cosmic Ray Analysis Geospace 2014, Rhodes 10/12



Testing for Poisson Consistency

The Variance Test
e For a Poisson distribution we have:
Mean value = A; Variance = A
Method: take data in the (long) accumulation time,
o findthe meanvalue X = L X% — A
o find the variance Var = 5= <1N > x2 — X2
e see how far it deviates from the expected value 1.

For this we need the , @ long formula in
powers of (x*), (x3), (x3), (x);
The deviation of the variance is thus (Var — 1)/+/var(Var)

If the variance deviates beyond the 95% confidence level, the
Poisson assumption is rejected.
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Testing for Poisson Consistency

The Variance Test

For a Poisson distribution we have:

Mean value = A; Variance = A
Method: take data in the (long) accumulation time,

o findthe meanvalue X = L X% — A

o find the variance Var = 5= <1N > x2 — X2

e see how far it deviates from the expected value 1.
For this we need the , @ long formula in
powers of (x%), (x3), (x?), (x);
The deviation of the variance is thus (Var — 1)/+/var(Var)
If the variance deviates beyond the 95% confidence level, the
Poisson assumption is rejected.
For a normal distribution, the 95% level is at 1.64 s.d.; Monte
Carlo find this for Poisson distribution, which — 1.64 as . —> 5.
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Testing for Poisson Consistency

Reliability of the variance test

e For true Poisson distributions of constant A, 5% will be rejected
(that is what 95% confidence level means). These are the
false negatives
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Testing for Poisson Consistency

Reliability of the variance test

e For true Poisson distributions of constant A, 5% will be rejected
(that is what 95% confidence level means). These are the
false negatives

e To work out the rate of false positives we need some model for
non-Poisson data.
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e For true Poisson distributions of constant A, 5% will be rejected
(that is what 95% confidence level means). These are the
false negatives

e To work out the rate of false positives we need some model for
non-Poisson data.

o We try taking a sample where A varies steadily by a factor of 2,
and test again (Monte Carlo) how many are accepted.
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Reliability of the variance test

e For true Poisson distributions of constant A, 5% will be rejected
(that is what 95% confidence level means). These are the
false negatives

e To work out the rate of false positives we need some model for
non-Poisson data.

o We try taking a sample where A varies steadily by a factor of 2,
and test again (Monte Carlo) how many are accepted.

Result

e For small A < 1, almost 95% of these bad distributions are still
accepted.
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Testing for Poisson Consistency

Reliability of the variance test

e For true Poisson distributions of constant A, 5% will be rejected
(that is what 95% confidence level means). These are the
false negatives

e To work out the rate of false positives we need some model for
non-Poisson data.

o We try taking a sample where A varies steadily by a factor of 2,
and test again (Monte Carlo) how many are accepted.

Result

e For small A < 1, almost 95% of these bad distributions are still
accepted.

e Once A varies from 1—2, do we get significant rejection rates.
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e We plot the orbit minima for the 4 SC and energy channels 2—-6.
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Long Term Results

Electron Background from 2001 to mid-2014
e We plot the orbit minima for the 4 SC and energy channels 2—6.

e There is a very definite systematic variation, with an increase
starting in 2003, a maximum at 2010, and a minimum about now
(mid- 2014).
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Long Term Results

Electron Background from 2001 to mid-2014
e We plot the orbit minima for the 4 SC and energy channels 2—6.

e There is a very definite systematic variation, with an increase
starting in 2003, a maximum at 2010, and a minimum about now
(mid- 2014).

e This is of course the (inverse) solar cycle.
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Cycle 24 Sunspot Number Prediction (2014/08)
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Long Term Results

Electron Background from 2001 to mid-2014
e We plot the orbit minima for the 4 SC and energy channels 2—6.

e There is a very definite systematic variation, with an increase
starting in 2003, a maximum at 2010, and a minimum about now
(mid- 2014).

e This is of course the (inverse) solar cycle.

¢ A similar pattern for background particle radiation has been seen
on Cassini at Saturn.
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Long Term Results

A02217

ROUSSOS ET AL.: MEV ION VARIABILITY AT SATURN A02217

Channel E6 (1.6 - 21 MeV) Background Count rates
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Figure 2. (top) Temporal variation of the E6 electron channel background. The background is sampled
for a region of a few Saturn radii outside 20 R,, where foreground fluxes of MeV electrons are typically
below the instrumental background. A smoothed profile is also overplotted. Several small intensifications
(e.g., during 2005) are attributed to solar wind energetic events [Roussos et al., 2008], but the overall
profile is affected by changes in the heliospheric fluxes of penetrating GCRs which dominate the E6
background. (bottom) Count rates from three neutron monitors at the Earth. The long-term profile is a
proxy for the solar cycle modulation of the cosmic ray flux input to the Earth’s atmosphere. Dropouts
correspond to Forbush decreases (see also section 4.3), while spikes are from ground level enhancements.
Data are available through the Bartol Research Institute Web site at http:/neutronm.bartol.udel.edu/.
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Long Term Results

Electron Background from 2001 to mid-2014
e We plot the orbit minima for the 4 SC and energy channels 2—6.

e There is a very definite systematic variation, with an increase
starting in 2003, a maximum at 2010, and a minimum about now
(mid- 2014).

e This is of course the (inverse) solar cycle.

¢ A similar pattern for background particle radiation has been seen
on Cassini at Saturn.

o We therefore conclude that this RAPID electron background is
also a product of penetrating cosmic ray radiation, modified by
solar cycle activity.
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